
Johnson’s Algorithm

Weighted Directed Graphs

Let G = (V,E) be a directed graph. A weight function of G is a function w : E → R. We say
the ordered pair (G,w) is a weighted graph. The shortest path problem is to find the path from
x to y of smallest total weight, for x, y ∈ V , The single pair shortest path problem is to find the
minimum weight path for a single pair (x, y). The single source shortest path problem is to find
minimum weight paths from a specified source vertex to all vertices, while the all pairs shortest
path problem is to find minimum weight paths for every choice of (x, y).

Equivalent Weightings

Two weight functions, w1 and w2 on a directed graph G = (V,E) are equivalent if there is a
function f : E → R such that w2(x, y) = w1(x, y) + f(x)− f(y) for all (x, y) ∈ E.

Theorem 1 If w1 and w2 are equivalent weight functions on a directed graph G = (V,E), and
x, y ∈ V , any shortest path from x to y in (G,w1) is also a shortest path from x to y in (G,w2).

Johnson’s Algorithm

Johnson’s algorithm solves the all-pairs shortest path problem for a weighted directed graph
(G,w) with no negative weight cycles. Write G = (V,E), let n = |V | and m = |E|. The time
complexity of Johnson’s algorithm is O(nm logn), which is less than the Θ(n3) time complexity
of the Floyd-Warshall algorithm, provided m is small enough.

The first step of Johnson’s algorithm is to create the augmented weighted directed graph, (G∗, w∗).
G∗ has one new vertex, s, and n new arcs, {(s, x) : x ∈ V }, where w∗(x, y) = (x, y) if (x, y) ∈ E,
and w∗(s, x) = 0. We then use the Bellman-Ford algorithm to run the single source shortest
path problem on (G∗, w∗) For all x ∈ V , let f(x) be the least weight of any path in G∗ from
s to x. Since there is an arc of weight zero from s to x, we have f(x) ≤ 0. We now define
w′(x, y) = w(x, y) + f(x)− f(y), and solve the all-pairs shortest path problem on (G,w′)

Theorem 2 w′(x, y) ≥ 0 for all (x, y) ∈ E.

Proof: Since f is the solution to the single source shortest path problem on G∗, we have f(y) ≤
f(x) + w(x, y). Thus w′(x, y) = w(x, y) + f(x)− f(y) ≥ 0,

Since w′ is never negative, we can use Dijkstra’s algorithm n times to solve the single source
shortest path problem on (G,w′) using each vertex as the source, giving us the function dist′(x, y)
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for any x, y ∈ V . We then define dist(x, y) = dist′(x, y) − f(x) + f(y) to obtain the solution to
the original problem.

A Small Example

Let (G,w) be the weighted directed graph shown in Figure 1, where n = 7 and m = 9. There are
no negative cycles, but there are negative arcs.

Since m is considerably less than
n2

logn
we expect Johnson’s algorithm to be faster than the

Floyd-Warshall algorithm.
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Figure 1: (G,w), a Weighted Directed Graph.

We augment G1 by creating a new vertex s and an arc of length zero from s to each vertex of G;
these new arcs are shown in red in Figure 2. We call the resulting directed graph G∗. We apply
the Bellman-Ford single source algorithm to G∗. For each vertex x of G, let f(x) be the minimum
weight of any path in G∗ from S to x. The values of f are shown in red in Figure 2.
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Figure 2: The Augmented Weighted Directed Graph G∗.
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We now compute the adjusted weights, w′(x, y) for any vertices x and y. The definition of w′ is:

w′(x, y) = w(x, y) + f(x)− f(y)

Let (G,w′) is a weighted directed graph with no negative weight arcs. We show the adjusted
weights in Green in Figure 3.
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Figure 3: Calculation of Adjusted Weights w′ on G
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Figure 4: The Weighted Directed Graph (G,w′)
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We now run Dijkstra’s algorithm on (G,w′) n times. For each run we pick one vertex of G to be
the source. Each run yields a tree of shortest paths rooted at the chosen vertex, which we call
the Dijkstra tree.

In Figure 5 we show the n Dikstra trees. Minimum path weight values are written in dark red.
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Figure 5: Dijkstra Trees for each Choice of Source Vertex.
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In Figure 6 we replace the adjusted weight by the original weight for each arc. We relabel the
arcs of each Dijkstra tree. The true minimum path from x to y is unique path from x to y in the
tree rooted at x. Weights of those minimum paths are shown in red.
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Figure 6: Shortest Path Weights for (G,w)

A B C D E F G

A 0 3 5 1 0 2 4
A E B D E F

B 1 0 2 −2 −3 −1 1
C E B D E F

C −1 2 0 0 −1 1 3
C A E D E F
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We now write the array showing the results. The minimum
weight of a path from x to y is in row x and column y.
Underneath that weight is the back pointer.

Exercise: Fill in the missing information in the array.
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