Johnson’s Algorithm

Weighted Directed Graphs

Let G = (V, E) be a directed graph. A weight function of G is a function w : E — R. We say
the ordered pair (G, w) is a weighted graph. The shortest path problem is to find the path from
x to y of smallest total weight, for z,y € V, The single pair shortest path problem is to find the
minimum weight path for a single pair (x,y). The single source shortest path problem is to find
minimum weight paths from a specified source vertex to all vertices, while the all pairs shortest
path problem is to find minimum weight paths for every choice of (x,y).

Equivalent Weightings

Two weight functions, w; and ws on a directed graph G = (V, E) are equivalent if there is a
function f: E — R such that wa(z,y) = wi(z,y) + f(z) — f(y) for all (z,y) € E.

Theorem 1 If w; and wy are equivalent weight functions on a directed graph G = (V, E), and
x,y € V, any shortest path from x to y in (G,w1) is also a shortest path from x to y in (G, ws).

Johnson’s Algorithm

Johnson’s algorithm solves the all-pairs shortest path problem for a weighted directed graph
(G,w) with no negative weight cycles. Write G = (V, E), let n = |V| and m = |E|. The time
complexity of Johnson’s algorithm is O(nmlogn), which is less than the ©(n?) time complexity
of the Floyd-Warshall algorithm, provided m is small enough.

The first step of Johnson’s algorithm is to create the augmented weighted directed graph, (G*, w*).
G* has one new vertex, s, and n new arcs, {(s,z) : x € V}, where w*(z,y) = (x,y) if (z,y) € E,
and w*(s,z) = 0. We then use the Bellman-Ford algorithm to run the single source shortest
path problem on (G*,w*) For all x € V, let f(x) be the least weight of any path in G* from
s to x. Since there is an arc of weight zero from s to =, we have f(z) < 0. We now define
w'(x,y) = w(z,y) + f(x) — f(y), and solve the all-pairs shortest path problem on (G, w’)

Theorem 2 w'(z,y) > 0 for all (z,y) € E.

Proof: Since f is the solution to the single source shortest path problem on G*, we have f(y)

<
f(2) +w(z,y). Thus w'(z,y) = w(z,y) + f(x) — f(y) >0, I

Since w’ is never negative, we can use Dijkstra’s algorithm n times to solve the single source
shortest path problem on (G, w’) using each vertex as the source, giving us the function dist’(z,y)



for any x,y € V. We then define dist(z,y) = dist'(z,y) — f(z) + f(y) to obtain the solution to
the original problem.

A Small Example

Let (G, w) be the weighted directed graph shown in Figure 1, where n = 7 and m = 9. There are
no negative cycles, but there are negative arcs.
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Since m is considerably less than ] we expect Johnson’s algorithm to be faster than the
o

Floyd-Warshall algorithm.
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Figure 1: (G,w), a Weighted Directed Graph.

We augment G by creating a new vertex s and an arc of length zero from s to each vertex of G;
these new arcs are shown in red in Figure 2. We call the resulting directed graph G*. We apply
the Bellman-Ford single source algorithm to G*. For each vertex x of G, let f(x) be the minimum
weight of any path in G* from S to x. The values of f are shown in red in Figure 2.

Figure 2: The Augmented Weighted Directed Graph G*.



We now compute the adjusted weights, w’(z,y) for any vertices x and y. The definition of w’ is:

w'(z,y) = w(z,y) + f(x) — fy)

Let (G,w') is a weighted directed graph with no negative weight arcs. We show the adjusted
weights in Green in Figure 3.

Figure 3: Calculation of Adjusted Weights w’ on G
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Figure 4: The Weighted Directed Graph (G, w")



We now run Dijkstra’s algorithm on (G, w’) n times. For each run we pick one vertex of G to be
the source. Each run yields a tree of shortest paths rooted at the chosen vertex, which we call

the Dijkstra tree.

In Figure 5 we show the n Dikstra trees. Minimum path weight values are written in dark red.

Dijkstratree B 0 F
rooted at A o— »o02 20
LA 2 N‘ y« \1‘
@ 40— 0'» 3
A C 2 E G
Dijkstra tree B 0
rooted at C o——» . 2

) 2 \ / \
@0
A 0 C
Dijkstratree B 0
rooted at E Q—— > . 4

s /\

2.4—.4—@ 0

A 0 c

Dijkstra tree B 0
rooted at G o —— > . 6

7 2/

4oge«—o0= @0

G

a
[
[ %)

A 0

Dijkstra tree B 0 D F
rooted at B — >0 0 0e
20— 0<+———0 ) eo1
A v c 2 E G
Dijkstratree B D F
rootedatD @4 0@ Oe
v N
2
20— o090 o1
A * c 2 E 2 G
Dijkstra tree B 0 D F
rootedatF @—— > @ 5§ 0@

s N

30— 0<+——— 0« 0]

A ¢ 2 E 2 G

Figure 5: Dijkstra Trees for each Choice of Source Vertex.



In Figure 6 we replace the adjusted weight by the original weight for each arc. We relabel the
arcs of each Dijkstra tree. The true minimum path from x to y is unique path from x to y in the
tree rooted at x. Weights of those minimum paths are shown in red.
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¢ A E | D |FE|F weight of a path from x to y is in row x and column y.
D Underneath that weight is the back pointer.
E Exercise: Fill in the missing information in the array.
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