University of Nevada, Las Vegas Computer Science 477/677 Spring 2025 Assignment 2: Due Saturday February 1, 2025

Name:
You are permitted to work in groups, get help from others, read books, and use the internet.
To turn in the homework, follow instructions given by the teaching assistant, Sabrina Wallace.

1. Problem 0.1 on page 8 of the textbook. Write either O, Ω or Θ in each blank. Write Θ if that is correct, otherwise write O or Ω .

(a)
$$n - 100 = \dots (n - 200)$$

(b)
$$n^{1/2} = \dots (n^{2/3})$$

(c)
$$100n + \log n = \dots (n + \log^2 n)$$

(d)
$$n \log n = \dots (10n + \log(10n))$$

(e)
$$\log(2n) = --- (\log(3n))$$

(f)
$$10 \log n = \dots (\log(n^2))$$

(g)
$$n^{1.01} = \dots (n \log^2 n)$$

(h)
$$n^2/\log n = \dots (n\log^2 n)$$

(i)
$$n^{0.1} = --- (\log^2 n)$$

(j)
$$(\log n)^{\log n} = \dots (n/\log n)$$

(k)
$$\sqrt{n} = --- (\log^3 n)$$

(l)
$$n^{1/2} = \dots (5^{\log_2 n})$$

(m)
$$n2^n = \dots (3^n)$$

(n)
$$2^n = \dots (2^{n+1})$$

(o)
$$n! = \dots (2^n)$$

(p)
$$\log_2 n^{\log_2 n} = \dots (2^{(\log_2 n)^2})$$

(q)
$$\sum_{i=1}^{n} i^k = \dots (n^{k+1})$$

2. Look up Fibonacci numbers $F_1, F_2, F_3 \dots$ if you are not familiar with them. Recall that $F_i + F_{i+1} = F_{i+2}$. The first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, ...

Find the smallest constant C such that $F_n = O(C^n)$.

3. Consider the following C++ program.

```
void process(int n)
{
  if(n > 1) process(n/2);
  cout << n%2;
}

int main()
{
  int n;
  cout << "Enter a positive integer: ";
  cin >> n;
  assert(n > 0);
  process(n);
  cout << endl;
  return 1;
}</pre>
```

The output of process(n) is a string of bits. What does this bitstring represent?

4. The C++ code below implements a function, "mystery." What does it compute?

```
float mystery(float x, int k)
{
  if (k == 0) return 1.0;
  else if(x == 0.0) return 0.0;
  else if (k < 0) return 1/mystery(x,-k);
  else if (k%2) return x*mystery(x,k-1);
  else return mystery(x*x,k/2);
}</pre>
```

5. The C++ code below implements a function. What does that function compute?

```
int gcd(int n, int m)
{
  if(n < 0) return gcd(-n,m);
  else if(m < 0) return gcd(n,-m);
  else if(n < m) return gcd(m,n);
  else if(m > 0) return gcd(m,n%m);
  else return n;
}
```