
University of Nevada, Las Vegas Computer Science 477/677 Spring 2024

Answers to Assignment 6: Due Saturday April 5 2025

1. Fill in the blanks.

(a) True or false: Open hashing uses open addressing. false .

(b) When two data have the same hash value, that is called a collision .

(c) A perfect hash function gives a 1-1 correspondence between the data and the indices of the hash

table.

(d) In closed hashing, if a collision occurs, one of the data uses a probe sequence to search for an

unused index.

(e) A connected acyclic graph (not digraph) with 25 vertices must have 24 edges.

(f) In open hashing, the data which share a hash value must be stored in a search structure . (Choose

one of these answers: search structure, priority queue, virtual array, directed graph.)

(g) In cuckoo hashing, each datum has more than one possible hash value.

(h) An optimal binary prefix code for a given weighted alphabet can be computed using Huffman’s

algorithm.

(i) In an unweighted directed graph, the shortest path between two given vertices can be found by

breadth-first search. (Choose one of these answers: Depth, Breadth.)

(j) Binary search tree sort (or simply tree sort) is a fast implementation of insertion sort. (Choose of

these answers: selection, bubble, insertion, quick.)

(k) A topological order of a directed graph G is an ordering of the vertices of G such that vertex x

must be come earlier than vertex y in the ordering if there is an arc from x to y,

(l) The subproblems of a dynamic program must be worked in topological order.

2. Write the asymptotic time complexity for each code fragment, using Θ notation.
(a) for (int i=1; i < n; i++)

for (int j=i; j > 0; j--)
Θ(n2)

(b) for (int i=1; i < n; i=2*i)

for (int j=i; j < n; j++)
Θ(n log n)

(c) for (int i=1; i < n; i++)

for (int j=1; j < i; j = j*2)
Θ(n log n)

(d) for (int i=1; i < n; i++)

for (int j=i; j < n; j = j*2)
Θ(n)

(e) for (int i=2; i < n; i = i*i) Θ(log log n)

(f) for (int i=1; i*i < n; i++) Θ(
√
n)



3. Give an asymptotic solution to each of these recurrences, using the Bentley-Blostein-Saxe method, oth-

erwise known as the master theorem. Some of them may require substitution.

(a) F (n) = 2F (n/2) + n

F (n) = Θ(n log n)

(b) F (n) = 4F (n/2) + n3

F (n) = Θ(n3)

(c) F (n) = 4F (n/2) + n2

F (n) = Θ(n2 log n)

(d) F (n) = 4F (n/2) + n

F (n) = Θ(n2)

(e) T (n) = 7T (n/7) + n

T (n) = Θ(n log n)

(f) T (n) = 9T (n/3) + n2

T (n) = Θ(n2 log n)

(g) T (n) = 8T (n/2) + n3

T (n) = Θ(n3 log n)

(h) T (n) = T (
√
n) + 1 Use substitution: m = log n.

T (n) = Θ(log log n)

(i) T (n) = 2T (n− 1) + 1 Use substitution: n = logm, i.e. m = 2n.

T (n) = Θ(2n)

4. Give an asymptotic solution to each of these recurrences using the Akra-Brazzi method, otherwise known

as the generalized master theorem.

(a) F (n) = 2F (n/4) + F (n/2) + 1

γ = 1 since 2

(

1

4

)

+
1

2
= 1

F (n) = Θ(n)

(b) F (n) = 2F (n/4) + F (n/2) + n

γ = 1 since 2

(

1

4

)

+
1

2
= 1

F (n) = Θ(n log n)

2



(c) F (n) = 2F (n/4) + F (n/2) + n2

γ = 1 since 2

(

1

4

)

+
1

2
= 1

F (n) = Θ(n2)

(d) F (n) = F (3n/5) + F (4n/5) + n2

γ = 2, since

(

3

5

)2

+

(

4

5

)2

= 1

F (n) = Θ(n2 log n) vskip 0.1in

(e) F (n) = F (n/3) + 5F (2n/3) + 1

γ = 4, since

(

1

3

)4

+ 5

(

2

3

)4

= 1

5. Give an asymptotic solution to each these recurrences, using the anti-derivative method.

(a) F (n) = F (n− log n) + log n

F (n)− F (n− log n)

log n
= 1

F ′(n) = Θ(1)

F (n) = Θ(n)

(b) G(n) = G(n− 1) + nc where c ≥ 1 is a constant.

G(n)−G(n− 1)

1
= nc

G′(n) = Θ(nc)

G(n) = Θ(nc+1)

(c) K(n) = K(n−
√
n) + n

K(n)−K(n−
√
n)

√
n

=
n
√
n

K ′(n) = Θ(
√
n)

K(n) = Θ(n3/2)

6. What is the asymptotic complexity of the function martha(n) given below, in terms of n? Write a

recurrence and solve. (I mean the actual value of martha(n), not the time to compute it.)

int martha(int n)

{

assert(n >= 0);

if(n < 1) return 0;

else return 2*martha(n/2) + n;

}

martha(n) = 2martha(n/2) + n

martha(n) = Θ(n log n)

3



7. What is the asymptotic time complexity of the above code which computes martha(n)? Assume that

each addition or multiplication takes constant time.

Let T (n) be the time for the above code to compute martha(n). Then

T (n) = 2T (n/2) + 1 since it only takes 1 step to fetch n.

T (n) = Θ(n).

8. If you actually need the value of martha(n) and not other values of martha, the above recursive code

is rather inefficient. Describe a faster method. What is its asymptotic time complexity? Assume that

each addition or multiplication takes constant time.

We can use dynamic programming, which takes Θ(n) time:

martha[0] = 0;

for(int i = 1; i <= n; i++)

martha[i] = 2*martha[i/2] + i

write martha[n]

We can use memoization, which takes Θ(log n) time: Assume memos of the form (i,martha(i)) are stored

in a search structure.

int martha(int i)

if (there is a memo (i,m)) return m;

else

if(i == 0) m = 0;

else

m = martha(i/2) + i;

store the memo (i,m)

return m;

write martha(n)

9. What is the asymptotic complexity of the function george(n) given below, in terms of n? Write a

recurrence and solve. (I mean the actual value of george(n), not the time to compute it.)

int george(int n)

{

assert(n >= 0);

if(x <= 1) return 1;

else return george(3*n/5) + george(4*n/5) + n*n;

}

The recurrence is george(n) = george(3n/5)+ george(4n/5) + n2

Using the Akra-Brazzi method, γ = 2.

The solution is george(n) = Θ(n2 log n).

4



10. What is the asymptotic time complexity of the above code which computes george(n)? Assume that

each operation takes constant time.

The recurrence is:

The recurrence is T (n) = T (3n/5) + T (4n/5) + 1

Using the Akra-Brazzi method, γ = 2.

The solution is T (n) = n2.

11. The following table gives two possible hash values for each of a set of 8 data. Can you construct a closed

hash table of size 8 which contains all the data?

If so, construct the table. Otherwise, convince me that it’s impossible.

Abe 1 4

Bob 7 3

Cec 5 6

Dan 5 7

Eve 1 6

Fay 2 3

Hal 4 8

Ida 8 2

1 Abe Eve Abe

2 Fay

3 Bob

4 Abe Hal

5 Cec Dan Cec

6 Cec Eve

7 Bob Dan

8 Ida

5


