
Arrays

Introduction

Abstract Arrays

An abstract array A is a theoretical structure with the following properties.

1. There is a set of indices, which guide access to the data contained in A. For convenience, we assume

indices are integers or tuples of integers, although they could be characters, or members of any other

ordered type.

2. There is an operator fetchA which returns the datum of A indicated by the parameter of fetch,

which is an index.

3. There is an operator storeA whose parameters are an index and a datum.

4. A stored datum can be retrieved by fetch. Specifally, if storeA(i,x) is executed, where i is an index,

fetchA(i) will return x.

Modern programming languages have a built-in implementation of array. In this case x = fetchA(i)

is implemented as x = A[i], and storeA(i,x) is implemented as A[i] = x. But there are many other

important implementations.

Sparse Arrays

An abstract array is called sparse if there are relatively few indices that point to an actual datum. If there

is no datum whose index is i, fetchi returns a default value, such as zero or nil. We implement a sparse

array using space only for the actual data.

Example. A hospital’s data includes a variable of type record for each patient. A record contains

the medical history of one patient, and also includes the patient’s social security number. We declare the

pointer type patient as follows: typedef record*patient

Our data form a virtual array P, where patient fetchP(i) returns a pointer to the record of the patient

whose social security number is i, or a nil pointer if that record does not exist.

The virtual array can be implemented as a set of ordered pairs of the form (i,p), where i is an index and

tt p is a pointer to the record of the patient whose social security number is i. We do not store data for

unused social security numbers. This set of pairs is stored in a search structure where the key of each pair

is the index.
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Memoization

In a dynamic programming problem, where F (n) is computed with using previously computed values of F ,

it may be impractical, or even impossible, to predict which values are needed, or to compute these values in

topological order. Memoization uses recursion to precompute thse predecessor values as they are needed.

Example: Collatz Stopping Time. For any positive integer n, define f(n) = n/2 if n is even,

and 3n+1 if n is odd. The Collatz conjecture states that, starting with a positive integer n and repeatedly

applying f , you will eventually reach 1. The number of steps is called the stopping time of n, defined

recursively as S(1) = 0, S(n) = 1 + S(f(n)) otherwise. For example, S(13) = 9. 40, 20, 10, 5, 16, 8, 4, 2,

1 is the Collatz sequence of 13. To compute S(n) dynamically, we must know the values of S(m) for all m

in the Collatz sequence of n. Some of these could be larger than n, thus S(i) is not a function of S(j) for

j < i. The following pseudocode describes the computation using memoization.

int S(int n)

if n = 1 return 0;

else if there is a memo (n,s)

return s;

else

s = 1+S(f(n));

store the memo (n,s);

return s;

The Collatz Conjecture (Open) is that every positive integer has a finite stopping time. The conjecture is

know to be true for all numbers up to more than a trillion. (I haven’t kept up with the latest.)

Problem 1: If S(i) is computed for all i up to 100, will 100 memos be stored, or more, or fewer?

Storing Arrays

If an array A[n] is declared, in a program, where, in the main memory of the machine, are the terms of A

stored? We assume that main memory consists of words , each of which has an unsigned integer address. If

each term of A requires one word of storage, then we expect that A[0] is stored at some address base, and

that each A[i] is stored at the address base +i.

But what about multi-dimensional arrays? Two standard methods for mapping that array onto main

memory are row major order and column major order. The row-major order of A[4][3] is

A[0][0] A[0][1] A[0][2] A[1][0] A[1][1] A[1][2] A[2][0] A[2][1] A[2][2] A[3][0] A[3][1] A[3][2]

and the column-major order is

A[0][0] A[1][0] A[2][0] A[3][0] A[0][1] A[1][1] A[2][1] A[3][1] A[0][2] A[1][2] A[2][2] A[3][2].

Offset. If each term of A[n][m] is stored in one word of memory, The entry A[i][j] is stored at address

base + offset(i,j), where the offset is the number of predecessors of A[i][j]. For row major order, A[i][j] has

m ∗ i + j predecessors, for column major order, n ∗ j + i predecessors. If each entry of A uses d words of
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storage, offset(i,j)= d ∗ (m ∗ i+ j) for row major order.

3 Dimensions. Row-major and column-major order are defined for higher dimensional arrays. Of

course, there is no definition of “row” or “column” in those cases. For row-major order, the last index is

incremented first, and incrementation is from right to left, like the odometer of your car. For example, the

array A[2][3][2] is stored in the order:

A[0][0][0] A[0][0][1] A[0][1][0] A[0][1][1] A[0][2][0] A[0][2][1] A[1][0][0] A[1][0][1] A[1][1][0] A[1][1][1] A[1][2][0]

A[1][2][1].

In column major order:

A[0][0][0] A[1][0][0] A[0][1][0] A[1][1][0] A[0][2][0] A[1][2][0] A[0][0][1] A[1][0][1] A[0][1][1] A[1][1][1] A[0][2][1]

A[1][2][1].

Problem 2. What is the formula for the offset of A[i][j][k] if the array A[n][m][ℓ] is stored in row-major

order, and each term takes d words of storage?

Problem 3. A 3-dimensional array X[5][8][6] is stored in main memory in column-major order, with base

address base. Each term of the array requires 4 words of storage. What is the address in memory of

X[3][5][4]?

Triangular Arrays

The most well-known example of an abstract triangular array is Pascal’s Triangle. We write C[n][k] or
(

n

k

)

, for 0 ≤ k ≤ n, for entry k in row n of Pascal’s Triangle.
(

n

k

)

is frequently called “n choose k,” or

“combinatorial n over k,” and is the number of subsets of order k of a set of order n. Numbering of the

rows, as well as entries within rows, begins with 0. For example,
(

6

2

)

= 15. Here are rows 0 through 6:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Subsequences.
(

n

k

)

is the number of strictly increasing subsequences of length k of the sequence

0, 1, . . . , n. On the other hand, the number of increasing (not necessarily strictly increasing) subsequences

of length k of the sequence 0, 1, . . . , n is
(

n+k−1

k

)

. We will make use of this formula later.

Triangular arrays are not stored in main memory, rather in a user declared linear array. In row-major

order, entries of Pascal’s Triangle will be written: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 . . . C[n][k]

has
(

n+1

2

)

predecessors, for example
(

5

3

)

= 10 and has
(

6

2

)

+ 3 = 18 predecessors.

H igher Dimensional Triangular Matrices. An array A with 2 parameters is triangular if it every entriy

A[i][j] satisfies the rule i ≥ j ≥ 0. In row-major order, A[i][j] has
(

i+1

2

)

+
(

j

1

)

predecessors. (Note that
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(

j

1

)

= j.) A is a 3-dimensional triangular array if A[i][j][k] satisfies the rule i ≥ j ≥ k ≥ 0. The rule is that

A[i][j][k] has
(

i+2

3

)

+
(

j+1

2

)

+
(

k

1

)

predecessors.

Exercise: How many predecessors does A[i][j][k][ℓ] have if A is a 4-dimensional triangular array?
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