A* Algorithm

The A* algorithm solves the single source minpath (least weight path) prob-
lem for a weighted directed graph. Let w(x,y) be the weight of the arc, from
T to .

In the example below, the edges are not directional, but we simply assume
that each edge represents two arcs, one in each direction.

A* is an “intelligent” version of Dijkstra’s algorithm, which finds the a minal
path from the source S to all vertices. A* is restricted to just one target
vertex, T'.

Heuristic

To work the algorithm, we must first obtain a value h(z), shown in red in
the figues, for each vertex x. For each x, h(z) must be a positive number
which is no greater than the least distance from x to T'. Letting h(z) = 0
for all z is a valid choice: in that case the rounds of A* duplicate the steps
of Dijkstra’s algorithm. The best choice is to let h(x) be the true distance
from x to T'. That choice is clearly not obtainable in practice, since if we
knew those values, we would already have a solution!

The heuristic should satisfy h(z) — h(y) > w(x,y) for all vertices = and y.
We say h is monotone or consistent.

Crow Flies

In an important practical case, where the distance from x to T follows a
system of roads, a good choicd of heuristic could be the geodesic distance.
Consistency is guaranteed in this case.

Steps of A*

As in Dijkstra’s algorithm, every vertex is either unprocessed, partially pro-
cessed (OPEN), or fully processed (CLOSED) at each round. Inially, S is
partially processed and all other vertices are unprocessed.

If x is partially processed, f(z), shown in black in the figures, is the least
cost of any path from S to = found so far. If z is fully processed, f(x) is the

least cost of any path from S to z.

For fully and partially processed vertices, g(x) = f(z)+h(z), shown in green
in the figures.

At each round of the A* algorithm, the following steps are executed.

1. The partially processed vertex x which has the smallest value of g(z)
is chosen.

2. For each out-neighbor y of x which is unprocessed, let f(y) = f(z) +
w(xz,y) y becomes partially processed. the back pointer back(z) =y
shown as a dashed magenta arrow in the figures, is defined.

3. For each out-neighbor z of x which is partially processed. compute
temp = f(z) + w(z, z). If temp < f(x), redefine f(x) = temp and
redefine back(z) = 2.

4. z is now fully processed.

5. If x =T, the algorithm halts. The least cost path, of weight 7', may
be found by following back pointers starting at 7.

Open: FA,G,I,C
Closed: S,B

Open: F,A,D,G,|
Closed: SB,C

Open: F,A,D,G,|
Closed: S,B,C

Open: H,F,AJD,G
Closed: S,B,C||

Open: H,F,A,JD,G
Closed: S,B,C||

Open: F,N,A,JD,H
Closed: S,B,C,1,G

Open: F,N,A,JD,H
Closed: S,B,C,1,G

Open: P,O,F,N,A,D,J
Closed: SB,C,I,GH

Open: P,O,F,N,A,D,J
Closed: SB,C,I,G,H

Open: P,O,F,N,A,D,K
Closed: S,B,C,I,G,H,J

Open: P,O,F,N,A,D,K
Closed: SB,C,I,G,H,J

Open: P,O,L,R,F,N,A,D (O
Closed: S,B,C,I,H,JK

10

Open: P,O,L,R,FN,A,D (O
Closed: SB,C,|,H,JK

Open: O,L,R,F,N,P,A
Closed: S,B,C,I,H,JK,D

11

Open: O,L,R,F,N,P,A
Closed: SB,C,I,H,JK,D

Open: E,P,O,L,R,F,N,A
Closed: S,B,C,I,H,JK,D

12

Open: E,P,O,L,R,F,N,A
Closed: SB,C,I,H,JK,D

Open: E,P,O.L,R
Closed: SB,C,I,H,JK,D,A,F,N

13

Open: E,P,O,L,R
Closed: S,B,C,I,H,JK,D,AF.N

Open: M,E,O,P,Q,T 4(/);3/
Closed: SB,CI, HJK,DAFENRM *

14

Open: M.E,OP,QT 1
Closed: SB.C.I HJK.D.AENRM

Open: M,E,O,P,Q
Closed: SB,C,I, HJK,D,A,F,N,R,M, T

15

