
Kruskal’s Algorithm and Union-Find

Throughout, when we say graph we mean undirected graph.

1. A tree is a graph which is connected and acyclic. Note that a tree which has n vertices must
have exactly n− 1 edges.

2. A directed tree is a directed graph such that

(a) One vertex, designated to be the root, has outdegree 0.

(b) Each vertex, other than the root, has outdegree 1.

(c) For each vertex v, there is a directed path from v to the root.

3. A forest is a graph which is the disjoint union of trees.

4. A directed forest is a directed graph which is the disjoint union of directed trees.

Kruskal’s Algorithm

A component of a graph G is a maximal connected subgraph of G. A spanning tree of a graph
G is a subgraph which is a tree and which contains all vertices of G. If G is weighted, i.e., every
edge of G has a weight, a spanning tree is minimal if the total weight of its edges is minimal
among all spanning trees of G. A spanning forest of any graph G consists of a spanning tree of
each component of G. If G is weighted, a spanning forest of G is minimal if the total weight of
its edges is minimal.

Kruskal’s algorithm finds a minimal spanning tree of a connected weighted graph, and can
be extended to find a minimal spanning forest of any weighted graph G. During the algorithm,
edges can be either selected or discarded. At any given step, the selected subgraph S is a forest
consisting of all vertices of G together with all edges selected up to that step. Edges are processed
in order of weight. Procssing an edge e = {x, y} consists of selecting e if x and y belong to different
components of S, otherwise discarding e. When an edge is selected, the number of components
of S decreases by 1. Computation ends when each component of S is a minimal spanning tree of
one component of G, Kruskal’s algorithm is greedy since at each step a minimal edge which does
not create a cycle is selected.

In some applications, we only wish to find the set of components of G. meaning that all edges
of G can be thought of having equal weight. In this case, the edges can be processed in any order.

Implementation of Kruskal’s Algorithm using Union/Find

Given a weighted graph G, the data structure of our implementation consists of a forest S and a
directed forest D. S is a subgraph of G, a set of trees which include all vertices of G and the edges
which have been selected so far. D is the union of directed trees, each of which corresponds to
one of the trees of S, and has the same set of vertices. The number of arcs of one of these directed
trees equals the number of edges of the corresponding tree in S, but an arc may not correspond
to any edge of S. When an edge is selected and added to S, the number of arcs in D is increased
by 1 After all steps, S is a minimal spanning forest of G and D is a spanning directed forest of G.

Parents and Leaders. Each vertex of D, other than the root of one of its components, has
a parent vertex, and D contains an arc from that vertex to its parent. From each vertex v, there
is a unique directed path in D from v to a root vertex ℓ, which we call the leader of v, and we

1



call v a follower of ℓ. The function Find(v) recursively computes the leader of a vertex v, while
the function Union(k,ℓ), where k and ℓ are roots, assigns, say, ℓ to be the parent of k. This has
the effect of combining the two sets of followers into one. Initially, S and D consist of all vertices
of G and no edges or arcs. Edges are processed in order of increasing weight, as shown in the
pseudocode below.

Process an edge {u, v}:

k = Find(u);
ℓ = Find(v);
If(k = ℓ);
Discard e;

Else
Union(k,ℓ);
Select e;

Time Complexity. The worst case time to process one edge is O(n2), where n is the number
of vertices of G. The worst case time of the algorithm is O(mn2), where m is the number of
edges of G. However, the algorithm can be sped up by using the disjoint-set method introduced
by Galler and Fischer in 1964. Tarjan showed that, using this method, Union/Find takes only
O(mα(n)) time where α is the very slow growing inverse Ackermann function.1 The method
improves search time by using path compression which resets the parent of a vertex to be its
leader whenever Find is executed. Time is also improved by making sure that when Union is
executed, the leader of the larger set becomes the leader of the combined set.

For clarity, we explain these operations using C++ code, after giving a structural type for
vertices.

struct vertex

{

vertex*parent;

int numfollow;

};

vertex*find(vertex*v)

{

if(v->parent == v) return v;

else

{

vertex*u = v->parent;

vertex*ell = find(u);

v->parent = ell;

return ell;

}

}

1
α(m) ≤ 4 for any number m less than 22

2
65536

− 2. Thus, for any application whose input is small enough to
fit into the known universe (no kidding) the time is O(m).

2



void union(vertex*u,vertex*v)

{

if(u->numfollow <= v->numfollow)

{

u->parent = v;

v->numfollow += u->numfollow;

}

else union(v,u);

}

void initialize(vertex*v)

{

v->parent = v;

v->numfollow = 1;

}

3


