
The Fast Fourier Transform

1 Complex Numbers

A complex number, or Gaussian number , is an ordered pair of real numbers (a, b), together with
the following operations.

1. (Addition) (a, b) + (c, d) = (a+ c, b+ d).

2. (Multiplication) (a, b)(c, d) = (ac− bd, ad+ bc).

Write C for the system of all complex numbers, together with the two operations of addition and
multiplication.

Lemma 1.1

(a) C is a field. More specifically:

1. The additive identity is (0, 0).

2. The additive inverse of (a, b) is (−a,−b).

3. The multiplicative identity is (1, 0).

4. If (a, b) 6= (0, 0), the multiplicative inverse of (a, b) is
(

a
a2+b2

, −b
a2,b2

)

.

5. C satisfies the field axioms.

(b) The field of real numbers, R, embeds in C by x 7→ (x, 0).

By a slight abuse of notation, we will consider R to be a subfield of C, by identifying the real
number x with the complex number (x, 0). We assign the special name i = (0, 1). Thus, we can
write the complex number (a, b) as a+ bi; we call this standard form.

If z = a+ bi is any complex number, we write

1. |z| =
√
a2 + b2, the absolute value of z.

2. z̄ = a− bi, the conjugate of z.

Lemma 1.2 For any z ∈ C, zz̄ = |z|2
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For any integer n > 0 and any integer i, define ωi
n = cos

(

2πi
n

)

+ i sin
(

2πi
n

)

.

Lemma 1.3 For any n ≥ 1 and any integer i:

(a) |ωi
n| = 1.

(b) ωi
n = ω−i

n .

(c) ωi
n = ωj

n if and only if j − i is a multiple of n.

(d) There are exactly n solutions to the equation zn = 1, namely ωi
n for all 0 ≤ i < n. We call

these the nth roots of unity, and ωn = ω1

n is called the principle nth root of unity.

(e) (ωi
n)

j = ωij
n .

(f) For any positive integer p, ωip
np = ωi

n.

2 The Polynomial Ring C[x]

Let C[x] be the set of polynomial in one formal variable, x, with coefficients in the complex
numbers C. It is important to note that x is not a number, but rather, is what we call a formal

variable.

The objects of C[x] are polynomials of the form

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

where n ≥ 0 is an integer and each ai is a complex number. If f(x) ∈ C[x], we can also think of
f as being a function from C to C.

C[x] admits addition and multiplication, both defined in the usual “high school algebra” way,
but not division. We define the degree of a polynomial f to be the index of the largest non-zero
coefficient of x; thus, we would say that a0 + a1x+ a2x

2 + · · ·+ anx
n has degree n if an 6= 0.

Remark 2.1 If f(x), g(x) ∈ C[x], then the degree of f(x)g(x) is the sum of the degrees of f(x)
and g(x).

2.1 Point-Value Representation of Polynomials

We will use the following well-known lemma:

Lemma 2.2 If f is a polynomial function and f(u) = 0, then f(x) = (x − u)g(x) for some

polynomial function g.

Define Cn[x] to be the set of all polynomials of degree less then n over C. If f(x) ∈ Cn[x], then
f(x) = a0 + a1x + a2x

2 + · · · + an−1x
n−1. The coefficient representation of f(x) is the vector

(a0, a1, a2, . . . an−1).

A polynomial can be characterized by its values at a list of points of C, provided the number of
those points is at least one larger than the degree of the polynomial.

Let U = (u0, u1, . . . , un−1) be a list of distinct points of length n. If f is any function, write
f(U) = (f(u0), f(u1), . . . , f(un−1)).
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Lemma 2.3 If U = (u0, u1, . . . , un−1) is a list of distinct points of C of length n, and Let V =
(v0, v1, . . . , vn−1) be a list of points of C of length n. Then there is exactly one polynomial f of

degree less than n such that f(U) = V .

Proof: Let

f(x) =
n−1
∑

j=0

(

vj

∏

k 6=j(x− uk)
∏

k 6=j(uj − uk)

)

Trivially, f(U) = V .

To prove uniqueness, assume that g is another polynomial function of degree less than n, such
that g(U) = V . Let h(x) = f(x)−g(x). Thus, h(uj) = 0 for all j. By Lemma 2.2, h(x) is divisible
by the polynomial

∏n−1

j=0
(x − uj), which has degree n. But the degree of h must be less than n.

The only possibility is that h(x) = 0, and we are done. �

If U is a fixed list of distinct points of length n, then a polynomial f ∈ Cn can be characterized
either by the list of its coefficients or its point-value list f(U). Henceforth, we will always let
U = Ωn = (1, ωn, ω

2

n, . . . ω
n−1

n ), the list consisting of the nth roots of unity.

If f(U) = V , the process of computing V from the list of coefficients of f is called evaluation,
while the process of computing the list of coefficients of f from V is called interpolation.

2.2 Preliminaries

We will always assume that n is a power of 2, since we can pad a polynomial with zero terms if
necessary.

Divide and Conquer. If f =
∑n−1

j=0
ajx

j is a polynomial, for n > 1 a power of 2, we define

polynomials 0f and 1f as follows:

0f(x) =

n/2−1
∑

j=0

a2jx
j

1f(x) =

n/2−1
∑

j=0

a2j+1x
j

We can characterize these two polynomials by the conditions that each has degree less than n/2,
and that f(x) = 0f(x2) + x 1f(x2).

Let f ∈ Cn. We can recursively compute f(Ωn) as follows.

• If n = 1, then f(x) = a0, a constant function, Ω1 = (1) and f(Ω1) = (a0).

• If n > 1, recursively compute 0f(Ωn/2) =
0V = (0v0,

0v1 . . . ,
0vn/2−1) and

1f(Ωn/2) =
1V = (1v0,

1v1 . . . ,
1vn/2−1). Then f(Ωn) = V = (v0, v1, . . . vn−1) where

vj =







0vj + ωj
n

1vj if 0 ≤ j < n/2

0vj−n/2 + ωj
n

1vj−n/2 =
0vj−n/2 − ωj−n/2

n
1vj−n/2 if n/2 ≤ j < n
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Note that we are actually solving n/2 sets of two equations in two unknowns. Reversing the
process, we can compute both 0f(Ωn/2) and

1f(Ωn/2) from f(Ωn) as follows. For any 0 ≤ j < n/2:

0vj =
vj + vj+n/2

2

1vj =
vj − vj+n/2

2ωj
n

also by solving n/2 sets of two equations in two unknowns. This gives us a recursive procedure
for computing the coefficients of f from f(Ωn).

2.3 Implementation Matrix

In matrix shown below, we take n = 8, and we let ω denote ω8 =
√
2

2
+

√
2

2
i, the principle eighth

root of unity. Then,

Ω8 = (ω0, ω1, ω2, ω3, ω4, ω5, ω6, ω7) = (1,
√
2

2
+

√
2

2
i, i,−

√
2

2
+

√
2

2
i,−1,−

√
2

2
−

√
2

2
i,−i,

√
2

2
−

√
2

2
i)

000f(1) 001f(1) 010f(1) 011f(1) 100f(1) 101f(1) 110f(1) 111f(1)
00f(1) 01f(1) 10f(1) 11f(1) 00f(−1) 01f(−1) 10f(−1) 11f(−1)
0f(1) 1f(1) 0f(i) 1f(i) 0f(−1) 1f(−1) 0f(−i) 1f(−i)

f(1) f(ω) f(i) f(ω3) f(−1) f(ω5) f(−i) f(ω7)

Let us square 6561 = 1 + 6(10) + 5(10)2 + 6(10)3. We first write the matrix for 6561, starting at
the top row.

1 6 5 6 0 0 0 0

1 6 5 6 1 6 5 6

6 12 1 + 5i 6 + 6i −4 0 1− 5i 6− 6i

18 1 +
(

5 + 6
√
2
)

i −4 1 +
(

−5 + 6
√
2
)

i −6 1 +
(

5− 6
√
2
)

i −4 1−
(

5 + 6
√
2
)

i

We now construct the interpolation matrix. We square each entry in the bottom row of the
evaluation matrix to obtain the bottom row of the interpolation matrix. We then fill in the
remaining rows, in bottom-up order.

1 12 46 72 97 60 36 0

98 72 82 72 −96 −48 10 72

180 144 −96 + 10i −48 + 72i 16 0 −96− 10i −48− 72i

324 −96−60
√
2

+(10+12
√
2)i 16 −96+60

√
2

+(−10+12
√
2)i 36 −96+60

√
2

+(10−12
√
2)i 16

−96−60
√
2

−(10+12
√
2)i
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We now complete the calculation:

65612 =
(

1 + 6(10) + 5(10)2 + 6(10)3
)2

= 1 + 12(10) + 46(10)2 + 72(10)3 + 97(10)4 + 60(10)5 + 36(10)6

= 1 + 120 + 4600 + 72000 + 970000 + 6000000 + 36000000

= 43046721
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