
Range Queries

Lawrence L. Larmore UNLV

1 The Range Query Problem

The input to an instance of the range query problem is a sequence of data x1, x2, . . . xn of some
data type, and an associative operation, which we call addition and denote as“+,” on that data
type. Thus, x + (y + z) = (x + y) + z, which we write simply as x + y + z, for any three items x,
y, and z. We do not assume commutativity, nor do we assume the existence of inverses.

For each 0 ≤ p < q ≤ n, let the range query Q(p, q) =
∑q

i=p+1 xi. Our problem is to design a
data structure that enables us to evaluate an arbitrary query quickly, while keeping the space
complexity and initialization time of the data structure small. We will assume that it takes O(1)
time to execute one addition, and O(1) space to store one item.

1.1 Examples.

We give some examples of data types that could arise in practice for this problem.

1. Numbers (real numbers, integers, or whatever) and ordinary addition.

2. Numbers and ordinary multiplication.

3. Numbers and maximum (or minimum).

4. Matrices and matrix multiplication (or tropical matrix multiplication).

5. Bit strings and masking.

6. Lots of others.

1.2 Sets of Intervals

It is helpful to visualize the range query problem as follows. Given an integer n, let Ip,q be the
half-open interval (p, q], and let In be the set of Ip,q for all integers 0 ≤ p < q ≤ n.

A solution to the range query problem of size n is to find a set of intervals D ⊆ In such that every
member of In is the exact union of members of D. We define the size of our solution to be the
cardinality of D, and the query cost of our solution to be the maximum number of elements of D
needed to evaluation a query.

1



1.3 The Function Fd

For any 1 ≤ d ≤ n, we define Fd(n) to be the minimum size of any solution to the range query
problem of size n which has query cost d. We will generally write Dd(n) for a set of intervals
that constitutes a solution to that problem. For example, F1(n) =

(n+1
2

)

= Θ(n2), since the only
possible solution of query cost 1 is D = In, that is, D contains every interval.

At the other extreme, Fn(n) = n, by letting D = {Ii−1,i}. We illustrate these two solutions in
Figures 1 and 2.

0 1 2 3 4 5 6

Figure 1: F1(n) = n(n+1)
2

0 1 2 3 4 5 6

Figure 2: Fn(n) = n

1.4 Asymptotic Solutions

Recall that α1 = dn/2e, α2 = dlog
2
ne, and that, for k ≥ 2, αk(n) is defined by the recurrence

αk(n) =

{

0 if n = 1
1 + αk(αk−1(n) if n ≥ 2

Thus, α3(n) = log∗(n).

The following results have been proved.

• F1(n) = Θ(n2) = Θ(nα1(n)).

• F2(n) = Θ(n log n) = Θ(nα2(n)).

• F3(n) = Θ(n log log n).

• For k ≥ 3, F2k−2(n) = Θ(nαk(n))

• For k ≥ 3, F2k−1(n) = Θ(nαk(log n)) = Θ(nαk(n)).

Thus F4(n) = Θ(n log∗ n) = Θ(nα3(n)), and also F5(n) = Θ(n log∗ n) = Θ(nα3(n)).

1.5 Solution for d = 2

We will show that F2(n) = Θ(n log n), using the construction given by Hirschberg and Volper.

2



The data structure D2(n) is defined recursively. At the top level, it contains all intervals which
have bn/2c as an end point; we call these long intervals. There are n long intervals, shown in
blue in Figure 3, in the example where n = 13. Any query Q(p, q) for p ≤ bn/2c ≤ q can be
evaluated by combining the stored values for at most two long intervals, namely Ip,bn/2c and
Ibn/2c,q. To cover queries in the range 0 ≤ p < q < bn/2c or bn/2c < p < q ≤ n, we add a copy
of D2(bn/2c − 1) on the left, and a copy of D2(n − bn/2c − 1) on the right. If n ≤ 2, there is no
recursive step. Each of the layers of the construction contains at most n intervals, and there are
at most log

2
n layers, giving us the upper bound.

We can also set up a recurrence. Ignoring small discrepencies caused by rounding and adding or
subtracting 1, we have:

F2(n) ≤ n + 2F (n/2)

giving us F2(n) = O(n log n) by the Master Theorem.

0 1 2 3 4 7 9 10 11 1312865

Figure 3: F2(n) = Θ(n log n).

The lower bound is a bit harder. We need to prove the following theorem.

Theorem 1.1 Any solution to the query problem whose query cost is 2 has size Ω(n log n).

Proof: Define a query Q(p, q) to be long if p ≤ bn/2c ≤ q. We also define an interval Ip,q to be
long if p ≤ bn/2c ≤ q, namely that Ip,q contains the point bn/2c.
All other queries and intervals are called short. By definition, the number of intervals in Dn

needed to evaluate short queries is F2(bn/2c − 1) + F2(n − bn/2c − 1), and these intervals are all
short.

However, no long query can be evaluated using only short intervals. Let D long
n be the set of long

intervals in Dn.

Let L be the set of all 0 ≤ p < bn/2c such that p is the left end point of some long interval, and
let R be the set of all bn/2c < q ≤ n such that q is the right end point of some long interval.
Then |R| ≥ |L| = bn/2c.
Suppose there are fewer than bn/2c long intervals Dn. Then there must be some 0 ≤ p < bn/2c
such that p /∈ L, as well as some bn/2c < q ≤ n such that q /∈ R. The query Q(p, q) cannot
be evaluated using only two intervals in Dn, since at least one of those intervals must be a long

interval with an end point at either p or q, constradiction. Thus, the cardinality of D long
n is at

least bn/2c

3



Ignoring rounding and addition or subtraction of 1, we have the recurrence

F2(n) ≥ 2F2(n/2) + n/2

By the Master Theorem, F2(n) = Ω(n log n). �

1.6 Estimating F3(n)

Construction of D3(n) is more complex. We first pick a set of numbers, spaced approximately
√

n
apart. Let us call those top numbers. We now choose long top intervals and short top intervals,
as follows.

1. Between every pair of top numbers, there is a long top interval.

2. If a number i is not top, then there is an interval between i and the closest left top number,
and also between i and the closest right top number. We will call those short top intervals.

There are approximatelty
√

n/2 long top intervals, and approximately 2n short top intervals.
Thus, the number of top intervals is O(n).

D3(n) is then defined to consist of the following intervals.

1. All top intervals.

2. If b and b′ are neighboring top numbers, let m = b′ − b − 1, the number of integers strictly
between b and b′. We then recursively consruct D3(m), and place a copy of that structure,
shifted to the right by b, into D3(n).

...
...

......

......

.......................................

50 10 15 20 26

......
......

31 36 41 46

...

4



Figure 4: D3(n) where n = 400 Top intervals are shown in blue. The top intervals of
structures at the second first recursive level, such as D3(19), are shown in green. The
top intervals of the structures at the second recursive level, such as D3(5), are shown
in red. Top numbers are shown in blue. Top numbers at the first level of recursion are
shown in green, and top numbers at the second level of recursion are shown in red.

We analyze F3 by setting up a recurrence. Using the recursive constructino of D3(n) given above,
and ignoring rounding and addition or subtraction of 1, we have the recurrence

F3(n) ≤
√

nF3(
√

n) + O(n)

from which we conclude that F3(n) = O(log log n).

1.7 F4(n)

We construct D4(n) as follows.

1. Pick a set of top numbers, spaced approximately log
2
n apart.

2. Let m be the number of top numbers, approximately n/ log
2
n. Attach a copy of D2(m) to

the top numbers. The intervals of this structure will be called long top intervals.

3. There will be a short top interval between each number that is not top with the nearest top
numbers on both its right and its left.

4. Inside any gap between two top numbers, say of size `, attach a copy of D4(`).

We obtain a recurrence allowing us to solve for the size of D4(n).

5


