Distribution of a Sequence

Fri May 11 10:49:44 PDT 2007

For any real number x, define round(x) to be the integer nearest to x. If x is an odd multiple of $\frac{1}{2}$, we let $round(x) = x - \frac{1}{2}$.

Define f(x) = 2|round(x) - x|. We illustrate f in the figure below.

We now use randomization to be a pick a sequence $\mathbf{x} = x_0, x_1, \dots$ as follows:

- 1. $0 \le x_0 < 1$ is chosen uniformly at random.¹
- 2. For each $i \ge 1$, $x_i = f(x_{i-1})$.

Problem: what is the long-run behavior of the sequence \mathbf{x} ? Here are some hand calculations.

- If $x_0 = \frac{1}{4}$, then **x** converges to zero: $\mathbf{x} = \frac{1}{4}, \frac{1}{2}, 0, 0, 0, \dots$
- If $x_0 = \frac{1}{3}$, then **x** converges to $\frac{2}{3}$: $\mathbf{x} = \frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \dots$
- If $x_0 = \frac{1}{5}$, then **x** does not converge, but rather eventually alternates between two values: $\mathbf{x} = \frac{1}{5}, \frac{2}{5}, \frac{4}{5}, \frac{2}{5}, \frac{4}{5}, \dots$

However, these choices are obviously very special. What happens in most cases?

¹This means that, for any $0 \le a \le b < 1$, the probability that $a \le x_0 < b$ is exactly b - a.