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For any real number x, define round (x) to be the integer nearest to x. If x is an odd multiple

of 1

2
, we let round (x) = x − 1

2
.

Define f(x) = 2|round(x) − x|. We illustrate f in the figure below.
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We now use randomization to be a pick a sequence x = x0, x1, . . . as follows:

1. 0 ≤ x0 < 1 is chosen uniformly at random.1

2. For each i ≥ 1, xi = f(xi−1).

Problem: what is the long-run behavior of the sequence x? Here are some hand calculations.
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• If x0 = 1

5
, then x does not converge, but rather eventually alternates between two values:
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However, these choices are obviously very special. What happens in most cases?

1This means that, for any 0 ≤ a ≤ b < 1, the probability that a ≤ x0 < b is exactly b − a.
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